Thma Pun is located in the district of Kanhchriech. The population of this commune is approximately 8126 (2004). Groundwater sample collection occurred in October 2007 and consisted of the sampling of 18 tube wells throughout the commune. The attached figure presents the location of Thma Pun within Prey Veng as well as groundwater sample locations and exceedances of health-impacting contaminants (when applicable).

**Groundwater Quality Rating**

The groundwater quality rating for Thma Pun is 90F. Therefore, the general safety of deep aquifer groundwater is very good and the aesthetic quality of the water is poor, according to the contaminants measured and samples collected. The following two sections describe all major health and aesthetic contaminants that exceeded drinking water standards in at least one sample within the commune.

**Contaminants of Potential Concern – Health**

Nitrate - Elevated concentrations of Nitrate were observed within the commune. The estimated probability of encountering unacceptable concentrations of Nitrate (>50 mg/L) in tube wells is 8%, based on the observed data. Short-term exposure to elevated concentrations can cause blue-baby syndrome in infants.

Fluoride - Elevated concentrations of Fluoride were observed within the commune. The estimated probability of encountering unacceptable concentrations of Fluoride (>1.5 mg/L) in tube wells is 1%, based on the observed data. At concentrations greater than 1.5 mg/L, Fluoride can cause dental fluorosis and at concentrations greater than 4 mg/L, skeletal fluorosis can occur.
Contaminants of Potential Concern – Aesthetic

Iron - Elevated concentrations of Iron were observed within the commune. The estimated probability of encountering potentially unacceptable concentrations of Iron (>1 mg/L) in tube wells is 18%, based on the observed data. At elevated concentrations, Iron causes water to be cloudy and unpleasant to drink. An odor may also be encountered at high concentrations. Iron can also stain laundry, food (can cause discoloration of cooked rice), and leave deposits. Aeration allows oxygen to enter the water and react with Iron to form a compound which is insoluble in water. The newly formed solids will slowly settle to the bottom or can be removed more rapidly by filtration. Performing these procedures may reduce the concentration of Iron in water but follow-up testing is recommended to ensure water quality standards are met.

Turbidity - Elevated levels of Turbidity were observed within the commune. The estimated probability of encountering potentially unacceptable levels of Turbidity (>20 ntu) in tube wells is 10%, based on the observed data. Turbid or cloudy water appears unpleasant to the eye and is more likely have an unpleasant taste or odor. Turbidity can be reduced by filtration.

Hardness - Elevated levels of Hardness were observed within the commune. The estimated probability of encountering potentially unacceptable levels of Hardness (>500 mg/L) in tube wells is 28%, based on the observed data. Elevated hardness levels impact the effectiveness of soaps and detergents and can cause scaling on pipes and pans. Contrary to common belief, there is no relationship between consumption of hard water and urinary tract problems and kidney stones.

Chloride - Elevated concentrations of Chloride were observed within the commune. The estimated probability of encountering potentially unacceptable concentrations of Chloride (>600 mg/L) in tube wells is 12%, based on the observed data. Chloride can make water unpleasant to drink at elevated concentrations.